少一尾的九尾猫提示您:看后求收藏(傲轩小说网www.axxsw.net),接着再看更方便。

🎁美女直播

集合。历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。

20世纪以来,复数域上代数几何中的超越方法也有重大的进展。

例如,德·拉姆的解析上同调理论,霍奇的调和积分理论的应用,小平邦彦和斯潘塞的变形理论等等。

这使得代数几何的研究可以应用偏微分方程、微分几何、拓扑学等理论。

而这其中,代数几何的核心代数簇也被随之应用到其他领域中,如今的代数簇已经以平行推广到代数微分方程,偏微分方程等领域。

但在代数簇中,依旧有着一些重要的问题没有解决。

其中最关键的两个分别是‘微分代数簇的不可缩分解’和‘差分代数簇的不可约分解’。

尽管ritt等数学家早在二十世纪三十年代就已经证明:任意一个差分代数簇可以分解为不可约差分代数簇的并。

【鉴于大环境如此,本站可能随时关闭,请大家尽快移步至永久运营的换源app,huanyuanapp 】

但是这一结果的构造性算法一直未能给出。

简单的来说,就是数学家们已经知道了结果是对的,却找不到一条可以对这个结果进行验算的路。

这样说虽然有些粗糙,但却是相当合适。

而在米尔扎哈尼教授的稿纸上,徐川看到了这位女菲尔兹奖得主朝这方面努力的一些心得。

应该是受到了此前他在普林斯顿交流会上的影响,米尔扎哈尼教授在尝试给定两个不可约微分升列 as1, as2,判定 satas1是否包含 satas2。

这是‘微分代数簇的不可缩分解’的核心问题。

熟悉了整个稿纸,并且跟随德利涅教授在这方面深入学习过的他,很容易的就理解了米尔扎哈尼教授的想法。

在这个核心问题中,米尔扎哈尼教授提出了一个不算全新却也新颖的想法。

她试图通过构建一个代数群、子群和环面,来进一步做推进。

而建立这些东西所使用的灵感和方法,就来源于他之前在普林斯顿的交流会以及weyl-berry猜想的证明论文上。

......

“很巧妙的方法,或许真的能将代数簇推广到代数微分方程上面去,可能过程会稍微曲折了一点......”

盯着稿纸上

科幻灵异推荐阅读 More+
捡到未来黑科技,我却用来干实业

捡到未来黑科技,我却用来干实业

量子纠缠薛定谔
关于捡到未来黑科技,我却用来干实业: 2051年,从事新能源电池研究的固体物理学博士程远在失业当天,捡到了一台从未来穿越到现在的超级人工智能。在其帮助下,程远将石墨烯电池、质量加速器、太空电梯等未来科技提前变为现实。然而始料未及是的,原本应该在100年后才发生的各种灾难也提前到来。智械危机、空间站坠落、神秘病毒……学霸与超级人工智能该如何应对?
科幻 连载 161万字
我建了一座驸马城

我建了一座驸马城

风月无痕
我建了一座驸马城小说简介: 穿越到一个不是大唐胜似大唐的平行世界,心态佛系的郑如健,从只想让恩人吃上饱饭的愿望,到后来如何利用自己的现代知识帮助县令建造出一座令世人为之而惊叹的驸马城。
科幻 连载 16万字